Fractional dimension of sets in discrete spaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 222621
(http://iopscience.iop.org/0305-4470/22/13/053)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:45

Please note that terms and conditions apply.

COMMENT

Fractional dimension of sets in discrete spaces

M T Barlow ${ }^{\dagger}$ and S J Taylor \ddagger
† Statistical Laboratory, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, UK
\ddagger Department of Mathematics, Maths-Astronomy Building, University of Virginia, Charlottesville, VA 22903, USA

Received 21 September 1988

Abstract

We give a new definition $\operatorname{dim}_{H}(A)$ for the dimension of an arbitrary subset of the lattice \mathbb{Z}^{d}. We establish elementary properties, and calculate the dimension for some examples. Finally, we announce a result which states that, if $\operatorname{dim}_{H}(A)<d-2$, then A is transient for the simple random walk on \mathbb{Z}^{d}, and that if $\operatorname{dim}_{H}(A)>d-2$ then A is recurrent.

1. Introduction

Although Hausdorff dimension is the most commonly used definition of dimension for subsets of \mathbb{R}^{d}, there are contexts where some other definition is more appropriate [1,2]. Any reasonable definition will give the same answer for strictly self-similar sets, but even for affinely self-similar sets different definitions may give different values [3].

The definitions of dimension for subsets of \mathbb{R}^{d} all relate to the microscopic (i.e. local) properties of the set. However, many models in statistical physics involve working on a lattice (such as \mathbb{Z}^{d}), and any definition of dimension here must be related to the global properties of the set. One such definition based on the 'mass' of the set is in common use. Let $V(0, n)$ denote the cube with centre 0 and side n, and for a set A in \mathbb{Z}^{d} set

$$
\begin{align*}
& \operatorname{dim}_{U M}(A)=\limsup _{n \rightarrow \infty} \frac{\ln |A \cap V(0, n)|}{\ln n} \\
& \operatorname{dim}_{L M}(A)=\liminf _{n \rightarrow \infty} \frac{\ln |A \cap V(0, n)|}{\ln n} . \tag{1}
\end{align*}
$$

If these two numbers agree we call their common value the mass dimension of A and write it as $\operatorname{dim}_{M}(A)$; otherwise we refer to $\operatorname{dim}_{U M}(A), \operatorname{dim}_{L M}(A)$ as respectively the upper and lower mass dimensions of A. (It is easy to check that these numbers do not depend on the choice of 0 as the 'base point', and that the limits in (1) have the same value if $n \rightarrow \infty$ through a subsequence $n_{k}=2^{k}$.)

The mass dimension does seem to be useful in a great many contexts. However, as in the case of \mathbb{R}^{d}, one might expect there to be occasions when other definitions are more suitable. In this comment we give a new definition of dimension: we believe it to be the 'correct' lattice analogue of Hausdorff dimension. A different proposed definition has been given in [4], but, as we explain below, this has some undesirable properties.

2. The definition and elementary properties

We begin by setting up some notation. If $A \subseteq \mathbb{Z}^{d}$ then the sets $\lambda A, A+x$ are defined by $\lambda A=\{\lambda x: x \in A\}, A+x=\left\{y+x: y \in \mathbb{Z}^{d}\right\}$. For a point $x=\left\{x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}$, and $n \geqslant 1$ we set

$$
\begin{aligned}
& C(x, n)=\left\{y \in \mathbb{Z}^{d}: x_{i} \leqslant y_{i}<x_{i}+n\right\} \\
& V(x, n)=\left\{y \in \mathbb{Z}^{d}: x_{i}-\frac{1}{2} n \leqslant y_{i}<x_{i}+\frac{1}{2} n\right\} .
\end{aligned}
$$

We call $C(x, n)$ the cube with base x and side n, and $V(x, n)$ the cube with centre x and side n. Note that $C(x, 1)=V(x, 1)=\{x\}$, and that $|C(x, n)|=|V(x, n)|=n^{d} .(|A|$ denotes the number of points in A.) All the cubes we consider have sides parallel to the axes. If B is a cube we denote by $s(B)$ the length of the side of B.

We will also need a subcollection of cubes, the dyadic cubes. A cube B is a dyadic cube if B is of the form $C\left(x, 2^{n}\right)$, where $x \in 2^{n} \mathbb{Z}^{d}$. If B_{1}, B_{2} are dyadic cubes then either one is contained in the other, or B_{1} and B_{2} are disjoint. So, any cover of a set by dyadic cubes has a subcover of disjoint dyadic cubes. Let $S_{1}=V(0,2)$, and for $m \geqslant 2$ set

$$
\begin{equation*}
S_{m}=V\left(0,2^{m}\right) \backslash V\left(0,2^{m-1}\right) \tag{2}
\end{equation*}
$$

Thus $\left(S_{m}\right)$ is a sequence of disjoint cubical shells centred on the point $\left(-\frac{1}{2},-\frac{1}{2}, \ldots,-\frac{1}{2}\right)$.
Let $h:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing function with $h(0)=0$. For $A \subseteq \mathbb{Z}^{d}$, $n \geqslant 1$, set

$$
\begin{equation*}
\nu_{h}\left(A, 2^{n}\right)=\min _{A \cap S_{n} \leq \bigcup_{i=1}^{m} B_{l}} \sum_{i=1}^{m} h\left(\frac{s\left(B_{i}\right)}{2^{n}}\right) \tag{3}
\end{equation*}
$$

where the minimum is taken over all covers of $A \cap S_{n}$ by any set of cubes B_{1}, \ldots, B_{m} of the form $C(x, k)$. Now set

$$
\begin{equation*}
m_{h}(A)=\sum_{n=1}^{\infty} \nu_{h}\left(A, 2^{n}\right) \tag{4}
\end{equation*}
$$

Let $\tilde{\nu}_{h}\left(A, 2^{n}\right)$ and $\tilde{m}_{h}(A)$ be defined in the same way, except that the minimum is taken over covers by dyadic cubes. If $h(x)=x^{\alpha}$ we write ν_{α}, m_{α} for ν_{h}, m_{h}. We now define

$$
\begin{equation*}
\operatorname{dim}_{H}(A)=\sup \left\{\alpha: m_{\alpha}(A)=\infty\right\} . \tag{5}
\end{equation*}
$$

We will call $\operatorname{dim}_{H}(A)$ the discrete Hausdorff dimension of A.
We now list some elementary properties of the definitions.
(i) By taking $B_{1}=V\left(0,2^{n}\right)$ we have $\nu_{h}\left(A, 2^{n}\right) \leqslant h(1)$ for any set A and $n \geqslant 1$. It follows that ν_{h} and m_{h} only depend on $h(x)$ for $0 \leqslant x \leqslant 1$.
(ii) If $h_{1} \leqslant h_{2}$ then it is clear that $\nu_{h_{1}}\left(A, 2^{n}\right) \leqslant \nu_{h_{2}}\left(A, 2^{n}\right)$, and so that $m_{h_{1}}(A) \leqslant m_{h_{2}}(A)$. Let $\alpha \leqslant \beta$: then since $x^{\alpha} \geqslant x^{\beta}$ for $0 \leqslant x \leqslant 1$ we have $m_{\alpha}(A) \geqslant m_{\beta}(A)$. Thus $m_{\alpha}(A)=\infty$ for $\alpha<\operatorname{dim}_{H}(A)$, and $m_{\alpha}(A)<\infty$ for $\alpha>\operatorname{dim}_{H}(A)$.
(iii) It is clear that $\left.\tilde{\nu}_{h}\left(A, 2^{n}\right) \geqslant \nu_{h}\left(A, 2^{n}\right)\right)$. If B_{1}, \ldots, B_{m} is an optimal cover of $A \cap S_{n}$ by cubes, then there exist dyadic cubes $Q_{i j}, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant 2^{d}$, such that each $b_{i} \subseteq \bigcup_{j=1}^{2^{d}} Q_{i j}$, and $s\left(Q_{i j}\right) \leqslant s\left(B_{i}\right)$. So

$$
\begin{equation*}
\tilde{\nu}_{h}\left(A, 2^{n}\right) \leqslant 2^{d} \nu_{h}\left(A, 2^{n}\right) \tag{6}
\end{equation*}
$$

and thus $\tilde{m}_{h}(A)<\infty$ if and only if $m_{h}(A)<\infty$.
(iv) If $A_{1} \subseteq A_{2}$ then $\nu_{h}\left(A_{1}, 2^{n}\right) \leqslant \nu_{h}\left(A_{2}, 2^{n}\right)$. So $m_{h}\left(A_{1}\right) \leqslant m_{h}\left(A_{2}\right)$ and $\operatorname{dim}_{H}\left(A_{1}\right) \leqslant$ $\operatorname{dim}_{H}\left(A_{2}\right)$.
(v) If A is finite then $A \cap S_{n}$ is empty for all large n, and so $\nu_{n}\left(A, 2^{\prime \prime}\right)=0$ for all large n. Thus $m_{h}(A)<\infty$ for any h, and in particular $\operatorname{dim}_{H}(A)=0$.
(vi) For any set $A \subseteq \mathbb{Z}^{d}$ we have $\operatorname{dim}_{H}(A) \leqslant \operatorname{dim}_{U M}(A)$: the discrete Hausdorff dimension is less than the upper mass dimension. To see this, write $a_{n}=\mid A \cap$ $V\left(0,2^{n}\right) \mid, \gamma=\operatorname{dim}_{U M}(A)$. It is easily checked that $\gamma=\lim \sup _{n \rightarrow \infty} \ln a_{n} / \ln \left(2^{n}\right)$, so that if $\alpha>\beta>\gamma$ then $a_{n} \leqslant 2^{n \beta}$ for all large n. Covering $A \cap V\left(0,2^{n}\right)$ by a_{n} cubes of side 1 we have

$$
\nu_{\alpha}\left(A, 2^{n}\right) \leqslant a_{n} 2^{-n \alpha} \leqslant 2^{-n(\alpha-\beta)} .
$$

So $m_{\alpha}(A)<\infty$, and $\operatorname{dim}_{H}(A) \leqslant \gamma$.
(vii) For any $A \subseteq \mathbb{Z}^{d}, 0 \leqslant \operatorname{dim}_{H}(A) \leqslant d$. This is immediate from (iv), (v) and (vi).
(viii) If $A \subseteq \mathbb{Z}^{d}$ and $B=x+A$ (so that B is A translated by x) then $m_{h}(A)<\infty$ if and only if $m_{h}(B)<\infty$. In particular, $\operatorname{dim}_{H}(A)$ is not affected by translation. This is slightly less elementary than (i)-(vii), but is easily verified on noting that if $2^{n} \gg|x|$, then $x+S_{n} \subseteq S_{n-1} \cup S_{n+1}$.

One consequence of (viii) is worth noting. In the definition of m_{h}, the 'base point' was chosen to be the origin. Let $x \in \mathbb{Z}^{d}$, and write $m_{h}(x, A)=\sum_{n} \nu_{h}\left(x, A, 2^{n}\right)$, where $\nu_{h}\left(x, A, 2^{n}\right)$ is defined by (4), but with $A \cap S_{n}$ replaced by $A \cap\left(x+S_{n}\right)$. Then (viii) shows that $m_{h}(0, A)<\infty$ if and only if $m_{h}(x, A)<\infty$, and in particular that $\operatorname{dim}_{H}(A)$ is not affected by the choice of base point.

3. A lower bound for $\boldsymbol{\nu}_{\boldsymbol{h}}$

It is usually easy to obtain good upper bounds on ν_{h} (and so m_{h}) by inspection, and in many cases the 'obvious' covering of $A \cap S_{n}$ is essentially optimal. However, it is generally quite tricky to prove this optimality directly, since this means considering all coverings of $A \cap S_{n}$.

We now give a result which gives a lower bound on ν_{h}. This is a discrete analogue of the density lemma of [5].

Theorem 1. Let $A \subseteq S_{N}$ and μ be a measure on A. If for some $K>0$ and all $x \in \mathbb{Z}^{d}, 0 \leqslant n \leqslant N$,

$$
\begin{equation*}
\mu\left(A \cap C\left(x, 2^{n}\right)\right) \leqslant K h\left(2^{n-N}\right) \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\nu_{h}\left(A, 2^{N}\right) \geqslant 2^{-d} K^{-1} \mu(A) \tag{8}
\end{equation*}
$$

Proof. Let $\left(Q_{i}\right)$ be an optimal covering of $A \cap S_{N}$ by dyadic cubes, and write $s\left(Q_{i}\right)=2^{n_{i}}$. Then, as the (Q_{i}) are disjoint,

$$
\tilde{\nu}_{h}\left(A, 2^{N}\right)=\sum_{i} h\left(2^{n_{i}-R}\right) \geqslant \sum_{i} K^{-1} \mu\left(A \cap Q_{i}\right)=K^{-1} \mu(A) .
$$

Equation (8) now follows on using (6).

4. Examples

We now calculate the discrete Hausdorff dimension of some illustrative specimen sets in \mathbb{Z}^{d}.

4.1. A k-dimensional hyperplane

Let $k \leqslant d$ and set

$$
H_{k}=\left\{x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}: x_{k+1}=\cdots=x_{d}=0\right\} .
$$

By property $(\mathrm{vi}), \operatorname{dim}_{H}\left(H_{k}\right) \leqslant \operatorname{dim}_{U M}\left(H_{k}\right)=k$. Let $\alpha \leqslant k$, let $N \geqslant 1$ and let μ be the measure which assigns mass 1 to each point in $H_{k} \cap S_{N}$. Then for $0 \leqslant n \leqslant N$

$$
\mu\left(H_{k} \cap C\left(x, 2^{n}\right)\right) \leqslant 2^{n k} \leqslant 2^{N k}\left(2^{n-N}\right)^{\alpha} .
$$

So (7) holds with $K=2^{N k}, h(x)=x^{\alpha}$. Hence, by (8), and as $\mu\left(H_{k} \cap S_{N}\right)=2^{N k}\left(1-2^{-k}\right)$,

$$
\nu_{K}\left(H_{K}, 2^{N}\right) \geqslant 2^{-d}\left(1-2^{-k}\right) .
$$

Thus $m_{\alpha}\left(H_{K}\right)=\infty$ for $\alpha \leqslant k$, which implies that $\operatorname{dim}_{H}\left(H_{k}\right)=k$.

4.2. Thinly spaced sets

Let $0<\alpha<d$, and define T_{α} by taking $T_{\alpha} \cap S_{n}$ to be $2^{\alpha n}$ points uniformly spaced over the set S_{n}. Since

$$
\left|T_{\alpha} \cap V\left(0,2^{n}\right)\right|=\sum_{i=1}^{n} 2^{\alpha i} \leqslant c_{1} 2^{\alpha n}
$$

property (vi) implies that $\operatorname{dim}_{H}\left(T_{\alpha}\right) \leqslant \alpha$.
Let μ be the measure which assigns mass 1 to each point in $T_{\alpha} \cap S_{N}$, so that $\mu\left(T_{\alpha} \cap S_{N}\right)=2^{\alpha N}$, and let $\beta \leqslant \alpha$. Then, as T_{α} has density $2^{N(\alpha-d)}$ in S_{N},

$$
\mu\left(T_{\alpha} \cap C\left(x, 2^{n}\right)\right) \leqslant c_{2} \max \left(1,2^{n d+N \alpha+N d}\right)
$$

It is easily verified from this that

$$
\mu\left(T_{\alpha} \cap C\left(x, 2^{n}\right)\right) \leqslant c_{2} 2^{\alpha N}\left(2^{N-n}\right)^{\beta}
$$

and so, by (8),

$$
\nu_{\beta}\left(T_{\alpha}, 2^{N}\right) \geqslant c_{2}
$$

Hence $m_{\beta}\left(T_{\alpha}\right)=\infty$ for $0 \leqslant \beta \leqslant \alpha$, and $\operatorname{dim}\left(T_{\alpha}\right)=\alpha$.
For both these examples the discrete Hausdorff and mass dimensions are the same. Our third example (based on a well known example in potential theory) shows that this is not always the case.

4.3. A sequence of fat cubes

Let $z=(1,0, \ldots, 0) \in \mathbb{Z}^{d}, \alpha>0, a_{n}=(2+n)^{-\alpha} 2^{n}$ and set

$$
\begin{equation*}
F_{\alpha}=\bigcup_{n=1}^{\infty} C\left(2^{n} z, a_{n}\right) \tag{9}
\end{equation*}
$$

Clearly $\operatorname{dim}_{M}\left(D_{\alpha}\right)=d$. However, covering $F_{\alpha} \cap S_{N}$ by the cube $C\left(2^{N-2} z, a_{N-2}\right)$ gives, for $0<\beta \leqslant d$,

$$
\nu_{\beta}\left(F_{\alpha}, 2^{N}\right) \leqslant 2^{-2 \beta} N^{-\alpha \beta}
$$

Hence (using (vi)) we have $\operatorname{dim}_{H}\left(F_{\alpha}\right) \leqslant \min \left(\alpha^{-1}, d\right)$. A calculation similar to that in the previous two examples shows that, in fact, $\operatorname{dim}_{H}\left(F_{\alpha}\right)=\min \left(\alpha^{-1}, d\right)$.

If instead we take $a_{n}=2^{n \gamma}$, with $0 \leqslant \gamma<1$, we obtain, writing G_{γ} for the set defined by (9),

$$
\operatorname{dim}_{M}\left(G_{\gamma}\right)=\gamma d \quad \operatorname{dim}_{H}\left(G_{\gamma}\right)=0
$$

The reason that the discrete Hausdorff dimension of the sets F_{α}, G_{γ} is smaller than the mass dimension is that these sets are highly concentrated. Most of the points in these sets are 'wasted'.

In all of these examples the lower bound on ν_{α} was obtained by using theorem 1 with μ as counting measure on $A \cap S_{N}$. For more complicated sets, another choice of μ may be necessary.

4.4. Remarks on Naudts's definition

An alternative definition of dimension in \mathbb{Z}^{d} is given in [4]. We will refer to this as dim_{N}. This definition seems to us to be seriously flawed: it is not monotone.

An example is as follows. Let $0<\alpha<d, \gamma=\alpha / d$, and consider the sets T_{α}, G_{γ} defined above. Then $\operatorname{dim}_{N}\left(T_{\alpha}\right)=\alpha$ (all the definitions agree here), while $\operatorname{dim}_{N}\left(G_{\gamma}\right)=d$. (Here dim_{N} seeks out the thickest part of the set.) Now

$$
\left|T_{\alpha} \cap V\left(0,2^{n}\right)\right| \simeq\left|G_{\gamma} \cap V\left(0,2^{n}\right)\right| \simeq 2^{n \alpha}
$$

and so $m_{\beta}\left(T_{\alpha} \cup G_{\gamma}, s\right) \geqslant c m_{\beta}\left(T_{\alpha}, s\right)$ for some $c>0$. (Here m_{β} refers to the quantity defined by equation (2) in [4].) From this it follows that

$$
\operatorname{dim}_{N}\left(T_{\alpha} \cup G_{\gamma}\right) \leqslant \alpha<\operatorname{dim}_{N}\left(G_{\gamma}\right)=d
$$

5. Connections with random walks

There is a well known link between the (usual) Hausdorff dimension of a set A in $\mathbb{R}^{d}(d \geqslant 3)$ and Brownian motion: if $\operatorname{dim}(A)<d-2$ then, with probability $1, A$ is not hit by Brownian paths, while if $\operatorname{dim}(A)>d-2$ then A is hit with positive probability.

We now announce an analogous result in \mathbb{Z}^{d}. The analogue of Brownian motion is the nearest-neighbour random walk $X=\left(X_{n}, n \geqslant 0\right)$. Plainly, any non-empty set is hit by X with positive probability: the correct analogue is whether a set is hit by X infinitely often or not. (A zero-one law states that, if $A \subseteq \mathbb{Z}^{d}$, then $\pi_{\infty}(A)=\operatorname{prob}(X$ hits A infinitely often) is either 0 or 1 . If $\pi_{\infty}(A)=1, A$ is recurrent, otherwise A is transient: see [6,7].)

Theorem 2. Let $A \subseteq \mathbb{Z}^{d}$, where $d \geqslant 3$.
(a) If $m_{d-2}(A)<\infty$ then A is transient.
(b) If $\operatorname{dim}_{H}(A)>d-2$ then A is recurrent.

Remarks

(i) Note that $\operatorname{dim}_{H}(A)<d-2$ implies that $m_{d-2}(A)<\infty$.
(ii) If $\operatorname{dim}_{H}(A)=d-2$ and $m_{d-2}(A)=\infty$ then A may be either recurrent or transient: discrete Hausdorff dimension is not a sensitive enough measure of size to resolve these critical cases.
(iii) This result goes some way to justifying the value for the discrete Hausdorff dimension of the set F_{α} defined by (10).

The proof of theorem 2 will appear in [8].

Acknowledgment

One of us (SJT) has been partially supported by NSF contract DMS-87s01212.

References

[1] Stewart I 1988 Nature 333206
[2] Lapidus M L and Fleckinger-Pelle J 1988 C.R. Acad. Sci., Paris Ser. I 306171
[3] McMullen C 1984 Nagoya Math. J. 961
[4] Naudts J 1988 J. Phys. A: Math. Gen. 21447
[5] Taylor S J and Wendel J G 1966 Z. Wahrscheinlichkeitstheorie 6170
[6] Spitzer F 1976 Principles of Random Walk (Berlin: Springer) ch VI
[7] Lamperti J 1963 J. Math. Anal. Appl. 658
[8] Barlow M T and Taylor S J in preparation

