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COMMENT 

Fractional dimension of sets in discrete spaces 
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$ Department of Mathematics, Maths-Astronomy Building, University of Virginia, 
Charlottesville, VA 22903, USA 

Received 21 September 1988 

Abstract. We give a new definition dim,,(Aj for the dimension of an arbitrary subset of 
the lattice Z d .  We establish elementary properties, and calculate the dimension for some 
examples. Finally, we announce a result which states that, if dim, , (A)< d - 2 ,  then A is 
transient for the simple random walk on Z", and that if dim,, (A)  > d - 2 then A is recurrent. 

1. Introduction 

Although Hausdorff dimension is the most commonly used definition of dimension 
for subsets of Rd, there are contexts where some other definition is more appropriate 
[ l ,  21. Any reasonable definition will give the same answer for strictly self-similar sets, 
but even for affinely self-similar sets different definitions may give different values [3]. 

The definitions of dimension for subsets of Rd all relate to the microscopic (i.e. 
local) properties of the set. However, many models in statistical physics involve 
working on  a lattice (such as Z d ) ,  and any definition of dimension here must be related 
to the global properties of the set. One such definition based on the 'mass' of the set 
is in common use. Let V(0, n )  denote the cube with centre 0 and side n, and for a set 
A in Z d  set 

In lAn V ( 0 ,  n)l 
dim CM (A)  = lim sup  

Il-X In n 

In lAn V ( 0 ,  n ) l  
dim,,(A) = lim inf 

n - r  In n 
If these two numbers agree we call their common value the mass dimension of A and  
write it as dim,(A); otherwise we refer to dim.,(A), dim,,(A) as respectively the 
upper and lower mass dimensions of A. (It is easy to check that these numbers d o  
not depend on the choice of 0 as the 'base point', and that the limits in (1) have the 
same value if n + a3 through a subsequence nk = 2") 

The mass dimension does seem to be useful in a great many contexts. However, 
as in the case of Rd, one might expect there to be occasions when other definitions are 
more suitable. In this comment we give a new definition of dimension: we believe it 
to be the 'correct' lattice analogue of Hausdorff dimension. A different proposed 
definition has been given in [4], but, as we explain below, this has some undesirable 
properties. 
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2. The definition and elementary properties 

We begin by setting up some notation. If A G Z d  then the sets AA, A +  x are defined 
by AA ={Ax:x E A}, A + x  = { y + x : y ~  Z d } .  For apoint x ={XI,.  . . , xd) e Z d ,  and n 3 1 
we set 

C(x, n ) = { y d d :  x j S y i < x i + n }  

V( x, n) = { y  E Z d  : xi - in s y ,  < x, + in}. 
We call C(x, n) the cube with base x and side n, and V(x, n) the cube with centre x 
and side n. Note that C(x, 1) = V(x, 1) = {x}, and that IC(x, n)l = I  V(x, n ) l =  nd.  (IAI 
denotes the number of points in A.) All the cubes we consider have sides parallel to 
the axes. If B is a cube we denote by s ( B )  the length of the side of B. 

We will also need a subcollection of cubes, the dyadic cubes. A cube B is a dyadic 
cube if B is of the form C(x, 2"), where x E 2"Zd. If B 1 ,  B2 are dyadic cubes then 
either one is contained in the other, or B,  and B2 are disjoint. So, any cover of a set 
by dyadic cubes has a subcover of disjoint dyadic cubes. Let SI = V(0,2), and for 
m 3 2 set 

s, = V(O,2")\V(O, 2,-1). (2) 

Thus (S,) is a sequence of disjoint cubical shells centred on the point ( -:, -:, . . . , -i). 
Let h :  [0, a) + [ O , o o )  be a strictly increasing function with h(0)  = 0. For A E Zd, 

n 3 1, set 

where the minimum is taken over all covers of A n S, by any set of cubes B, ,  . . . , B, 
of the form C(x, k). Now set 

Let Ch (A, 2") and rirh (A) be defined in the same way, except that the minimum is taken 
over covers by dyadic cubes. If h(x)  = x" we write v,, m, for vh, mh. We now define 

dimH(A) = sup{a: "(A) =a}. ( 5 )  

We will call dimH ( A )  the discrete Hausdorf dimension of A. 
We now list some elementary properties of the definitions. 
(i) By taking B,  = V(0,2") we have vh(A, 2") Q h(1)  for any set A and n 2 1. It 

follows that v h  and mh only depend on h(x)  for 0 S x C 1. 
( i i)Ifh,Sh,thenitisclearthat v h , ( A , 2 " ) s  vhz(A,2"),andsothat nIh,(A)CnIh2(A). 

L e t c u s p :  t h e n s i n c e x " 3 x P  f o r 0 Q x Q l  wehavem,(A)2mm,(A).  Thus m,(A)=oo 
for cy < dim,(A), and " ( A )  <CO for a > dim,(A). 

(iii) It is clear that ;,,(A, 2") 3 vh(A, 2")). If B , ,  . . . , B, is an optimal cover of 
A n  S, by cubes, then there exist dyadic cubes Ql,, 1 C i Q m, 1 s j  s 2d, such that each 
b,sU;dl Qu, and s ( Q , ) s s ( B , ) .  So 

;h(A, 2")C zdVh(A, 2") (6) 
and thus &(A) < 00 if and only if mh(A) < 00. 

dim,, ( A2). 
(iv) If A, c A2 then vh(A1, 2") S vh(A2, 2"). So m,(A,) S m,(A,) and dim,(A,) s 
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(v) If A is finite then A n  S,  is empty for all large n, and so vh(A, 2") = 0 for all 
large n. Thus mh(A) < m for any h, and in particular dim,(A) = 0. 

(vi) For any set Ac_Zd we have dim,(A)sdim,,(A): the discrete Hausdorff 
dimension is less than the upper mass dimension. To see this, write a, = I A n  
V(0,2")), y = dim.,(A). It is easily checked that y = lim sup,,+= In a,/ln(2"), so that 
if a > p > y then a, s 2"@ for all large n. Covering A n  V(0,2") by a, cubes of side 
1 we have 

v,(A, 2") < a,2-"" S 2-n 'a -p1 .  

So "(A) < m, and dimH(A) S y. 
(vii) For any Ac_Zd, O s d i m H ( A ) S  d. This is immediate from (iv), (v) and (vi). 
(viii) If A c Z d  and B = x + A (so that B is A translated by x) then mh(A) < m if 

and only if mh(B) < W .  In particular, dimH(A) is not affected by translation. This is 
slightly less elementary than (i)-(vii), but is easily verified on noting that if 2" >> 1x1, 
then X+S,,ES,-~US,+~. 

One consequence of (vii i)  is worth noting. In the definition of mh,  the 'base point' 
was chosen to be the origin. Let x € Z d ,  and write m h ( X ,  A) = E n  vh(x, A, 2"), where 
v h ( x ,  A, 2") is defined by (4), but with A n  S,  replaced by A n  ( x +  S , ) .  Then (vii i)  
shows that mh(0, A) < m if and only if mh(x, A) < m, and in particular that dim. (A) 
is not affected by the choice of base point. 

3. A lower bound for U,, 

It is usually easy to obtain good upper bounds on (and so mh) by inspection, and 
in many cases the 'obvious' covering of A n  S,  is essentially optimal. However, it is 
generally quite tricky to prove this optimality directly, since this means considering 
all coverings of A n S , .  

We now give a result which gives a lower bound on v h .  This is a discrete analogue 
of the density lemma of [ 5 ] .  

Theorem 1. Let A c S ,  and p be a measure on A. If for some K > 0 and all 
xeZd, Os n s N, 

p ( A  n C(x, 2")) s Kh(2"-,) (7) 
then 

vh(A, 2") 3 2-dK-'p(A). 

Proof: Let ( Qi) be an optimal covering of A n  S ,  by dyadic cubes, and write s(  Qi) = 2"g. 
Then, as the (Q1)  are disjoint, 

ch(A, 2 N )  = E  h ( 2 " i - R ) 3 1  K - ' p ( A n  9,) = K- 'p(A) .  
I I 

Equation (8) now follows on using (6). 

4. Examples 

We now calculate the discrete Hausdorff dimension of some illustrative specimen sets 
in zd. 
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4.1. A k-dimensional hyperplane 

Let k s d and set 
d Hk = { x = (XI  , . . . , xd ) E z : x k  + 1 = ' = xd = 0) .  

By property (vi), dim, (Hk) C dimUM(Hk) = k. Let a C k, let N 3 1 and let p be the 
measure which assigns mass 1 to each point in Hk n sN. Then for 0 s n s N 

/,&(Hk n c(x ,  2 " ) )  2"k s 2 N k ( 2 " - N ) " .  

So ( 7 )  holds with K = 2Nk,  h ( x )  = x u .  Hence, by (8) ,  and as /,&(Hk n s,) = 2Nk( l  - 2 - k ) ,  

v K ( H K ,  2 , )  3 2 - d (  1-2 -k) .  

Thus m , ( H K )  = 03 for a c k, which implies that dim,(Hk) = k. 

4.2. Thinly spaced sets 

Let 0 < a < d, and define T, by taking T, n S, to be 2"" points uniformly spaced over 
the set S,. Since 

n 

IT, n V ( 0 , 2 " ) )  = 1 2 " ' s  ~ ~ 2 ~ '  
i = l  

property (vi) implies that dimH( T u )  s a. 

p (  T, n S , )  = 2",, and let p s a. Then, as T, has density 2N'"-d'  in S N ,  
Let p be the measure which assigns mass 1 to each point in T, nS,, so that 

/ , & ( ~ , n ~ ( x , 2 " ) ) s c , m a x ( l , 2 " ~ + ~ " + ~ ~  1. 
It is easily verified from this that 

w (  T, n C(x, 2 " ) )  s ~ ~ 2 ~ ~ ( 2 ~ - " ) ~  

and so, by ( 8 ) ,  

vp( T,, 2 N )  3 c2. 

Hence m,( T,) = 03 for OC /3 C a, and dim( T,) = a. 
For both these examples the discrete Hausdorff and mass dimensions are the same. 

Our third example (based on a well known example in potential theory) shows that 
this is not always the case. 

4.3. A sequence of fat cubes 

Let z = (1,0,. . . , 0) E Zd,  a > 0, an = ( 2  + r 1 ) - ~ 2 "  and set 
a: 

F, = U C ( 2 " z ,  U , ) .  
n = l  

( 9 )  

Clearly dim,(D,) = d. However, covering F, n SN by the cube C ( 2 N - 2 z ,  a N - J  gives, 
for O<p c d,  

v,(F,, 2 N ) s 2 - 2 P N - " P .  

Hence (using (vi)) we have dim,(F,)Smin(a-', d ) .  A calculation similar to that in 
the previous two examples shows that, in fact, dim,(F,) = min(a-', d ) .  
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If instead we take a ,  = 2",, with 0 s y < 1, we obtain, writing G, for the set defined 
by (9), 

dimM( G,) = yd dimH ( G,) = 0. 

The reason that the discrete Hausdorfl dimension of the sets Fa, G, is smaller than 
the mass dimension is that these sets are highly concentrated. Most of the points in 
these sets are 'wasted'. 

In all of these examples the lower bound on vu was obtained by using theorem 1 
with p as counting measure on A n  S,. For more complicated sets, another choice 
of p may be necessary. 

4.4. Remarks on Naudts's definition 

An alternative definition of dimension in Z d  is given in [4]. We will refer to this as 
dimN. This definition seems to us to be seriously flawed: it is not monotone. 

An example is as follows. Let O <  a < d, y = a / d ,  and consider the sets T,, G, 
defined above. Then dimN (T,) = a (all the definitions agree here), while dimN( G,) = d. 
(Here dim, seeks out the thickest part of the set.) Now 

1 T, n V(0,2")1 ̂ I jG, n V(0,2")1= 2"" 

and so m,( T, U G,, s )  2 cm,( T,, s )  for some c > 0. (Here mp refers to the quantity 
defined by equation (2) in [4].) From this it follows that 

dimN( T, U G,) 6 a < dim,( G,) = d. 

5. Connections with random walks 

There is a well known link between the (usual) Hausdorff dimension of a set A in 
Rd ( d  3 3 )  and Brownian motion: if dim( A) < d - 2 then, with probability 1, A is not 
hit by Brownian paths, while if dim(A) > d - 2 then A is hit with positive probability. 

We now announce an analogous result in H d .  The analogue of Brownian motion 
is the nearest-neighbour random walk X = (X , , ,  n 2 0). Plainly, any non-empty set is 
hit by X with positive probability: the correct analogue is whether a set is hit by X 
infinitely often or not. (A zero-one law states that, if A r Z d ,  then .rr,(A) =prob ( X  
hits A infinitely often) is either 0 or 1. If .rr,(A) = 1, A is recurrent, otherwise A is 
transient: see [6,7].) 

Theorem 2. Let A c Zd,  where d 5 3 .  
( a )  If md-,(A)<co then A is transient. 
( b )  If dimH(A)> d - 2  then A is recurrent. 

Remarks 
(i) Note that dimH(A) < d - 2 implies that md-, (A)  < CO. 

(ii) If dimH(A) = d - 2 and md- , (A)  = CO then A may be either recurrent or transient: 
discrete Hausdorfl dimension is not a sensitive enough measure of size to resolve these 
critical cases. 

(iii) This result goes some way to justifying the value for the discrete Hausdorfl 
dimension of the set Fa defined by (10). 
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The proof of theorem 2 will appear in [8]. 
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